Neighborhood Complexes and Generating Functions for Affine Semigroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neighborhood Complexes and Generating Functions for Affine Semigroups By

Given a1, a2, . . . , an ∈ Zd , we examine the set, G, of all non-negative integer combinations of these ai . In particular, we examine the generating function f (z) = ∑ b∈G z b. We prove that one can write this generating function as a rational function using the neighborhood complex (sometimes called the complex of maximal lattice-free bodies or the Scarf complex) on a particular lattice in Z...

متن کامل

Neighborhood Complexes and Generating Functions for Affine Semigroups

Given a1, a2, . . . , an ∈ Z , we examine the set, G, of all nonnegative integer combinations of these ai. In particular, we examine the generating function f(z) = ∑ b∈G z . We prove that one can write this generating function as a rational function using the neighborhood complex (sometimes called the complex of maximal lattice-free bodies or the Scarf complex) on a particular lattice in Z. In ...

متن کامل

Counting numerical Semigroups with Short Generating Functions

This paper presents a new methodology to compute the number of numerical semigroups of given genus or Frobenius number. We apply generating function tools to the bounded polyhedron that classifies the semigroups with given genus (or Frobenius number) and multiplicity. First, we give theoretical results about the polynomial-time complexity of counting these semigroups. We also illustrate the met...

متن کامل

Probability Generating Functions for Sattolo’s Algorithm

In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...

متن کامل

Remarks on Affine Semigroups

A semigroup is a nonvoid Hausdorff space together with a continuous associative multiplication, denoted by juxtaposition. In what follows S will denote one such and it will be assumed that S is compact. I t thus entails no loss of generality to suppose that S is contained in a locally convex linear topological space 9C, but no particular imbedding is assumed. For general notions about semigroup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2005

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-005-1222-y